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The q-deformed Poisson bracket, Levi-Civita symbol and 
Poincar6 algebra 

Won-Sang Chung, Ki-So0 Chung, Sang-Tack Nam and HyeJung Kang 
Theory Group, Depanment of Physics, College of Nahlral Sciences, Gyeongsang NationaI 
University, Jinju, 664-701, Korea 

Abstract In this paper we use a special choice of the GLrqgj (2N)  quannrm plane and its 
differential calculus for a q-defamed phase space to define a modified Poisson bracket and 
conshnct the conhadon rule for the q-deformed LeviCivita symbol. We find the q-deformed 
phase-space variable realization of the s0,(3) and q-deformed Paincad algebras. 

1. Introduction 

It is known that the quantum Yang-Baxter equation plays a crucial role in diverse problems 
in theoretical physics. These include exactly soluble models in statistical physics [l] and 
quantum integrable model field theory [2-9]. Quantum groups provide a practical example 
of a non-commutative differential geometry [lo]. The idea of a quantum plane was Iirst 
introduced by Manin [ 11-13]. The non-commutative differential geometry was first applied 
to quantum matrix groups by Woronowicz [14, U]. However, it is Wess and Zumino [16,17] 
who considered one of the simplest examples of non-commutative differential calculus on 
Manin’s quantum plane. They developed a differential calculus on the quantum hyperplane 
which was covariant with respect to thc action of the quantum deformation of GL(n),  the 
so called GL,(n). After this, much work followed in this direction [1&26]. In spite of 
this, it is still uncertain whether this new mathematical object will, in future, bring new 
‘phenomena’ into physics or not. Since the symmetries play an important role in physics, 
it is worth extending them to the deformed concept of symmetries which might also be 
used in physics. If quantum groups are applied to some types of physics, they are supposed 
to create a type of ‘new’ physics which defaults back to its classical version when the 
deformation parameters take particular values. To this end it is worthwhile constructing the 
fundamental concepts of and computational techniques for quantum groups. 

Recently some papers have described the q-deformed Poincar6 algebra 127-311. This 
paper should be included among them. However, it differs from them in that it starts from 
the q-deformed Poisson bracket. Therefore we can say that the context of this paper is an 
example of the q-deformation of class@ theory, not quantum theory. 

In this paper we make a special choice for the q-deformed phase space and differential 
calculus. We also construct the contraction rule for the q-deformed Levi-Civita symbol and 
prove it. We use these results to obtain a classical q-deformed so(3) algebra and a classical 
q-deformed Poincar.6 algebra. 

2. The q-phase space and q-Poisson bracket 

In this section we introduce a special choice for the q-deformed phase space to define the 
q-deformed Poisson bracket. First, let us define the local variables (xi,  pt .  i = 1,2, .  . . , N) 

0305-4410/94/062061+13$19.50 @ 1994 IOP Publishing Ltd 2061 



2062 Won-Sang Chung et ul 

of the q-deformed phase space so as to satisfy the following commutation relation 
X . X .  - q-'x.x XiPi = Pixi Z I -  I '  

pipj = q-lpjpi X '  ,PI . - - 4PjXi 

pixj = qxjpi (i c j ,  i, j = 1,2, . . . , N). (1) 

From these relations we conclude that each pair of the q-deformed phase-space variables 
(x i ,  pi) for every i = 1.2, . . . , N describes the ordinary plane where xi and pi are mutually 
commuting. However, the interconnection of different planes is described by q-deformed 
space relations. We call this q-deformed space the q-deformed Poisson manifold. 

In order to define the q-deformed Poisson bracket, it is necessary to consider the q- 
classical observables which are functions of q-classical phase-space variables xi ,  pi. (i = 
1,2, . . . , N). Let f (X, P) be a monomial whose form is 

(2) 
Mi nl mz "2 mN nN f (x? = P1 x2 PZ ' ' ' x N  PN 

where X and P denote ( X I , .  . . , X N )  and (PI,. . . , p ~ ) ,  respectively. From now on we will 
say that x ; ' p ; l x ~ p ~ .  . . x;"p;;" belongs to the ( M I ,  Mz,  . . . , M N ) - C ~ S  where 

M I  = m l - n l  Mz=mz-nz. ... MN =" - n N .  

At this stage we define the q-Poisson bracket for two monomials f and g as follows: 

c c 
where the left derivatives and appi act on f ( X ,  P) from the left, and the right 
derivatives a/axi and a/api act on g ( X ,  P) from the right. The relation between the right 
and left derivatives is 

- -  

For future calculations we propose that the q-deformed Poisson bracket fulfils 

Iafi + bfiv g)q = aIfi 3 glq + bIfz* g)q 

where a and b are real fields and monomials f1 , fz and g belongs to different (or the same) 
class. The relations are obtained by using the commutation relations between the q-phase 
space variables and their derivatives: 

a a a a 
axj aPj apj 

-pi * - I p i -  (i c j ) .  -x .  I - - 4-1XrG 
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Equation (6) for i > j can be obtained by replacing q with q-'. The proof of equation (6) 
is easy. To start with we prove the first relation of (6). Using the left-hand si& of the first 
relation of (6) on a monomial i7,"lxFrI.n;"=lpi,k leads to 

N a N  

The other relations of (6) can be obtained in a similar manner. 
If f ( X ,  P )  and g ( X ,  P )  belong to the ( M I ,  Mz, . . . , M~)-dass  and ( L I ,  Lz,..  . . ,LN)-  

class, respectively, then f ( X ,  P ) g ( X ,  P )  belongs to the (Mx+L1, M z f L z , .  ... , MN+LN)-  
class. Since (a/ax)xl = 1 and 1 and xl belong to the (0, 0, . . . , 0)-class and (1.0.. . . ,O)-  
class, respectively, a/axl  belongs to the (-1, 0, . . . , 0)-class. Similarly we see that a/am 
belongs to the (1.0,. . . , 0)-class, etc. Then the commutation relation between f ( X ,  P )  and 
g ( X ,  P )  is given by 

From the above definition we can easily see that two elements belonging to the same 
class commute. From the commutation relation between two elements belonging to their 
respective distinct class, we obtain 

where f ( X ,  P )  and g ( X ,  P )  belong to the ( M I ,  Mz, .,. . ,d!N)-Chs and (LL. Lz, ,. ., . , LN)-  
class, respectively. 

Therefore, if f ( X ,  P) and g ( X ,  P) belong to the same class, we have 

{f, glq = -k. f l q .  (9) 

It is worth noting that the arbitrary q-classical observables consist of severd elements 
belonging to their respective distinct classes. The q-Jacobi identity is written as 

where monomials f, g and h are assumed to belong to the (MJ, .., . ,&&)-class, the 
( L I ,  . . . , LN)-c~~ss and the ( R I ,  . . . , RN)-class, respectively. 
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3. Contraction d e  for the q-deformed Levi-Civita symbol 

In this section we obtain a q-analogue of the conh.action rule for the q-deformed Levi-Civita 
symbol, which is defined as 

E12 ... n 1 (11) 

and 

E...ij... = (-4) E,,,jj,,, 

where P ( i ,  j )  is defined as 

P ( i ,  j )  = 1 

P( i ,  j )  = -1 

(i > j )  

(i < j ) .  

For example, the q-levi-Civita symbol of rank three is easily computed according to 
definitions (11) and (12); 

E i u  = 1 

E132 = (-q)ElZ3 = -4 

E213 = (-q)ElZ3 = -9 

E231 = (-q)E213 = (-q)2ElZ3 = (-SI2 

E312 = (-q)E132 = (-q)2ElZ3 = (-q)’ 

E m  = ( - W m  = (-q)2Ezi3 = (-q)3E1z3 = (-d. 
When q goes to 1, the above equations reduce to 1 (or -1) for even (or odd) permutation 

To begin with we Write down the q-deformed contraction rule for the q-deformed Levi- 
of (1,2,3). 

Civita symbol and prove it later: 

where SN means the permutation group of degree N and 

Here S(i1, . . . , i ~ )  is defined as 
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where 

S(i ,  j )  = 1 

S ( i ,  j )  = 0 

(if i < j )  

(if i > j ) .  

For example, S(1,3,2,4) is computed as follows: 

S(1,3,2,4) = S(1,3) + S(1,2) + S(1,4) + S(3.2) + S(3,4) + S(2.4) = 5. 

Now we will prove the property of q-levi-Civita symbol (13) by means of mathematical 
induction. 

Let us assume that equation (13) holds for q-LeviCivita symbol of rank N. First we 
can easily obtain an equivalent form of equation (13) as follows: 

where SN-I (.?I) means the permutation group of degree N - 1 where ji is deleted. 

Civita symbol we obtain 
Consider the case. il = j ,  = I ,  I = 1,2,. . . , N .  From the definition of the q-Levi- 

Since we have assumed that the q-contraction rule for the q-Levi-Civita symbol holds for 
the d - N  case, we have 

Using the relation 

Inserting equation (22) into the right-hand side of equation (21), we complete the proof of 
equation (13) by virtue of the induction principle. 
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Equation (13) can be generalized into a more generic form, which is written as 

where 

The formulae for N = 3 and N = 4 are listed in appendices A and B. 

4. Classical q-deformed so(3) algebra 

In this section we use the q-deformed Poisson bracket for N = 3 to construct the phase- 
space variable realization of the classical q-deformed $143) algebra. Throughout, we will 
write the classical q-deformed 4 3 )  algebra as the su,(3) algebra, but this algebra does 
not mean the ordinary suq(3) algebra at the quantum level. Now we assume that the three 
generators of su,(3) take a form similar to that in the non-deformed case: 

( 2 4  L .  -E . .  x .  
I - zjk jPk. 

The concrete form of the three generators are given by 

where L1, L2 and L3 are three generators of szq(3). Here L,  consists of the element 
belonging to the (0, 1, -I)-class and that belonging to the (0, -1, 1)-class, Lz consists of 
the element belonging to the (-l,O, 1)-class and the element belonging to the (LO, -1)- 
class and L3 consists of the element belonging to the (1, -1, 0)-class and the element 
belonging to the (-1, l,O)-class. Here Eijk is called the q-Levi-Civita symbol and its 
non-vanishing components are 

Elp  = 1 El32 = -4 E213 = -4 

&l = (-4)’ E312 = (-4)’ E321 = (-q)’. (26) 

The suq(3) algebra is written as 
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where 

x j p k  = q-p ( i , k )  P k X j .  

Using relations (4), (5) we have 

{L;,  L!lq = EijkEj,.[q-P(j.k!-P(m.n! P k x m s j d n r  - x j p d k r & r ]  

= E .  ,k, . E .  l p p k  x m - Ei jkElknXjpn  

= Ei jkElkn(P jXn  - X j P n )  

Zi-l(8isj - q 2 C j - O - l s i s j ) ( p . x  - =-ejiq n I I n IPJJ 
- ~ ~ ~ ~ z i - l  i j zu- i !+ls i s j ) (  (4s" - 4 n 1 P j x n - x j P n )  

= ,gjiszj-2(sj .x. - s j X .  J P ~ )  + eijq (8, ~ j x i  - $xjPi) 21 j 
i P, 

21 -3 = eiiq 
= (Bj;q9-5 + B i ~ q ~ - ~ ) E i j ~ L ~  

(xipi - qxlp i )  + W"+'(x ip i  - q-'xipi) 

which completes the proof of equation (27). 
Now we should demonstrate that the algebra (27) is really a defomtion, i.e. that the 

q-factors cannot be eliminated by rescaling the generators. The algebra can be rewritten as 

WI, L2h = q-IL3 {Lz, & I q  = q3L1 W I 9  L3lq = -4% 

&, L11q = -L3 ~ {L3, h 1 q  = 4 h  IL3, L2Iq = -4 L1. 4 

If we rescale Li -+ kiLi to eliminate the q-factors, the first and fourth relations give 

kikz = 4-lk3 ~ kzki = k3 

which gives q-' = 1 for non-vanishing ki. This implies that the Ggebra(27) is really a 
deformation and that the q-factors cannot be eliminated. 

Now we will show that the algebra (27) is homomorphic to Fairlie's Cartesian suq (2) 
algebra [32] by rescaling the generators. First we can see that the algebra (27) is 
homomorphic to the following commutation relations 

rL3, Ldq-1 =qLz 

w 1 ,  L31q = -4 La 

3 

4 

[LI, Lzlq-' = 4-'L3 [ b r  L31q-I 4 LI 
z [Lz, L11q = --L3 rL3, L21q = -4 LI 
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where commutator [A, Elq  is defined as 

[A, BI4 = A B  - qBA.  

By rescaling the generators 

Li+kiLi i = l , 2 , 3  

we have 

Comparing the above relations with the Fairlie algebra 

rXY  - r-'YX = z 
r y z  - r-'ZY = x 
rZX - r-'XZ = Y 

we should demand that 

Solving the above relation we have 

kl = q1I2 kz = q312 k3 = q5lZ and r = q'lz. 

Therefore the algebra (27) is homomorphic to the following algebra 

4 l I z ~ ,  L~ - q-1/2LzL1 = L~ 

qlJZLzL3 - q -'IZL3LZ L1 

4 ' J ' L ~ L ~  - q-'JZL1L3 = Lz 

which is consistent with Fairlie's Cartesian suq(2) algebra given in [32]. We can construct 
the q-deformed harmonic Hamiltonian in three dimensions and we show that H is in 
involution, that is to say, 

Iff, w q  = 0 (28) 

where the q-deformed harmonic Hamiltonian is given by 

Here equation (28) results from the fact that xi and pi for every i = 1.2, . . . , N commutes. 
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5. Classical q-deformed Poinarc5 algebra 

In this section we obtain the q-analogue of the Poincar6 algebra by means of the 4- 
deformed Poisson bracket In analogy with equation (24). we introduce the ten independent 
generators of the q-deformed Poincar6 algebra. The four generators describe the q-deformed 
translation: 

Pi = p i  i = 1,2,3,4.  (30) 

(3 1) 

The six other generators describe the q-deformed Lorentz generators: 

M.. - E.. x ,, - rlkl KPi (i < i). 
The concrete forms of the six q-deformed Lorentz generators are written as 

Mi2 = ~ 3 ~ 4  - 4 x 4 ~ 3  

Mi3 = - 4 . ~ ~ 4  + q2x4p2 
3 Mz? = q2Xlp4- 4 x4P1 

Mi4 = q2xzp3 - q3x3p2 

The first three generators of equation (32) mean a q-deformed boost for each direction and 
the second three generators imply a q-deformed space rotation which is given in section 3. 
At this stage we cannot but confess that we do not know the 'physical' meaning of the 
q-deformed boost, the q-deformed space rotation or the q-deformed translation. 

Then the q-deformed Poinczu.6 algebra is written as follows 

{Pi, Pj lq  = 0, (33) 

(Mij ,  Pk}q = q-p(k"'Eijkifi (34) 

{Mi,, Mar}, = - S i r [ B ~ j ( - q ) " + ~ - ' ~  + @ji(-q) IEijabMob 
@-i)i+Si-ll 

- &jI~eki(-q)O-2)k-4 + eik(-q)z+2j-* IEkiobMab 

- J ~ ~ ( - ~ ) G + ( ~ - ~ ) I - Z ~  E liobMob 

IEkjobMob (35) (i-l)K+i-4 + 0jd-q) (4-i)kt6i-21 - Si i [ek j ( -q)  

where the repeated indices a ,  b are assumed to be summed over a -= b. The proof of 
equation (35) is as follows 

IMij. Mkl}q = E i j m n E k l p q b m P n i  X p P q I q  



where we used the relation 

where we used 



where we used 

Owing to the reason mentioned in section 4, we can see that the relations (33)-(35) 
are really deformations. We can easily show that the classical q-deformed Poincar6 algebra 
(33k(35) is homomorphic to some commutation relations in a way similar to that explained 
in section 4. However, Fairlie’s construction for q-deformed Poincar6 algebra is not yet 
known, so we cannot compare the algebra (33)435) with a known algebra. Considering 
that the suq(3) algebra given in equation (27) is homomorphic to Fairlie’s Cartesian suq(2) 
algebra, we can guess that the classical q-deformed PoincarL algebra ( 3 3 x 3 5 )  may be 
related to the q-deformed Cartesian Poincar6 algebra and that a deforming map into the 
ordinary Poincar6 algebra may exist. 

6. Conclusion 

In this paper we define the q-Poisson bracket and use this to constltlct the suq(3) algebra 
and q-deformed Poincar6 algebra in terms of q phase-space variables. There remains much 
work to be done in this direction. 

First, this procedure should be quantized in a consistent manner. In doing so, we must 
consmct the q-bracket correctly and investigate the relation between the q-Poisson bracket 
and q-bracket. 

Second, the suq(3) algebra is deeply connected with the rotation in tbree dimensions. 
The question then is: which phenomena are connected with suq(3)? 

TNd,  we think this procedure should be extended to the su,(n) case. The Maxwell 
equation possesses su(4) symmetry. Is there a q-analogue of the Maxwell equation and 
special relativity with symmetry group suq(4)? 

Finally, there is the question as to whether the classical q-deformed Poincar6 algebra 
(33)-(35) is homomorphic to the Cartesian q-deformed Poincar6 algebra. 

We hope that these problems and their interesting related topics will be studied in the 
near future. 
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Appendix B 

where 8 j j k  is an operation which forces i, j, k to be arranged in the order that a smaller 
index lies to the left. For example, for k < i < j ,  

8.. 6' gi gk - g k g i  g j  
z/k [f m n] - [I m "1. 

The q-symmetrizer is defined as 

S [ d m  j gk n1 - - 8 ' 6 j S k  I m n - q S i  m 8 j S k  I n - q6;S$Sk +q2&S/6f + q28t8{8k - q3S~8iSf .  
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